यदि $\operatorname{cosec} \theta=\frac{ p + q }{ p - q } \quad( p \neq q \neq 0)$ है, तो $\left|\cot \left(\frac{\pi}{4}+\frac{\theta}{2}\right)\right|$ बराबर है
$\sqrt {\frac{p}{q}} $
$\sqrt {\frac{q}{p}} $
$\sqrt {pq} $
$pq$
समीकरण $(\sqrt 3 - 1)\sin \theta + (\sqrt 3 + 1)\cos \theta = 2$ का व्यापक हल है
यदि $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ तब $\cos \left( {\theta - \frac{\pi }{4}} \right) =$
यदि $\cos \theta + \sec \theta = \frac{5}{2}$, तो $\theta $ का व्यापक मान है
यदि $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, तब $\theta $ का व्यापक मान होगा
समीकरण $1+\sin ^{4} x =\cos ^{2} 3 x , x \in\left[-\frac{5 \pi}{2}, \frac{5 \pi}{2}\right]$ के हलों की संख्या हैं